Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Virol J ; 20(1): 106, 2023 05 29.
Article in English | MEDLINE | ID: covidwho-20243616

ABSTRACT

BACKGROUND: The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS: Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS: A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS: The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.


Subject(s)
COVID-19 , Adolescent , Adult , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Enzyme-Linked Immunospot Assay
2.
J Biomol Struct Dyn ; : 1-10, 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-20236304

ABSTRACT

The treatment of coronavirus COVID-19, like other viral diseases, is currently underdeveloped. This fact necessitates the search for new drugs and treatment methods that will effectively disrupt the life cycle of the virus. A big problem in the therapy of viral diseases is the ability of viruses to evade the host's immune response. We suppose that the search for drugs that can change the evasiveness of the virus from the immune response of the host is a very promising strategy, as it can help the body to cope with the infection. Protein SARS-CoV-2 ORF8 is one of the key proteins that can suppress antiviral immunity. This paper considers the available information on the structure and functioning of ORF8, as well as the results of molecular docking of ORF8 to a wide range of tetrapyrrole macroheterocyclic compounds capable of generating reactive oxygen species upon photoirradiation. This principle of photoinactivation of biosubstrates underlies the methods of photodynamic therapy of cancer. Application of photoinactivation of drug-resistant forms of bacteria and some viruses can be useful in the fight against COVID-19 and other viral infections. In this work, the structure of ORF8 complexes with macrocyclic compounds is considered in detail, the dependence of their binding affinity on the nature of macrocycles and the nature of peripheral substituents is analyzed and spectral studies of the binding of ORF8 to chlorin is performed. This paper is a part of a large project to investigate the possibility of using macrocyclic compounds for the treatment of viral diseases.Communicated by Ramaswamy H. Sarma.

3.
Viruses ; 15(4)2023 03 29.
Article in English | MEDLINE | ID: covidwho-2291466

ABSTRACT

The COVID-19 pandemic has resulted in upwards of 6.8 million deaths over the past three years, and the frequent emergence of variants continues to strain global health. Although vaccines have greatly helped mitigate disease severity, SARS-CoV-2 is likely to remain endemic, making it critical to understand its viral mechanisms contributing to pathogenesis and discover new antiviral therapeutics. To efficiently infect, this virus uses a diverse set of strategies to evade host immunity, accounting for its high pathogenicity and rapid spread throughout the COVID-19 pandemic. Behind some of these critical host evasion strategies is the accessory protein Open Reading Frame 8 (ORF8), which has gained recognition in SARS-CoV-2 pathogenesis due to its hypervariability, secretory property, and unique structure. This review discusses the current knowledge on SARS-CoV-2 ORF8 and proposes actualized functional models describing its pivotal roles in both viral replication and immune evasion. A better understanding of ORF8's interactions with host and viral factors is expected to reveal essential pathogenic strategies utilized by SARS-CoV-2 and inspire the development of novel therapeutics to improve COVID-19 disease outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Open Reading Frames , Pandemics , Antiviral Agents
4.
Coronaviruses ; 2(5) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2267274

ABSTRACT

The coronaviruses, belonging to the family Coronaviridae, have caused a massive pandemic in December 2019 after their previous outbreaks as SARS-CoV and MERS. The outbreak is believed to have originated from the seafood and live market in the Hubei province of China. The Rhinolophus species are the natural hosts of this virus. This virus caused pneumonia and took away many lives be-fore it was recognized as the novel Coronavirus. Very little information is available about the biology and nature of the novel Coronavirus. This article reviews multiple aspects encompassing its origin, epi-demiology, pathogenesis, symptoms, and the global statistics of spread. Acute respiratory distress syndrome (ARDS) is the key symptom of this condition. Angiotensin-converting enzyme 2 (ACE2) helps in the penetration of the virus into the target cells. Deeper research and understanding are essential for the identification of antibodies that inhibit ACE2 and can prevent viral replication. Drug design and control of disease are crucial. In countries like India, where plant diversity is extensive, it is prudent to focus on plant-based alternative drugs. Many attempts have been made to review and curate the drug discovery attempts using immuno-informatic and bioinformatic tools.Copyright © 2021 Bentham Science Publishers.

5.
Pathogens ; 9(9)2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-2279551

ABSTRACT

The COVID-19 pandemic, in the first seven months, has led to more than 15 million confirmed infected cases and 600,000 deaths. SARS-CoV-2, the causative agent for COVID-19, has proved to be a great challenge for its ability to spread in asymptomatic stages and the diverse disease spectrum it has generated. This has created a challenge of unimaginable magnitude, not only affecting human health and life but also potentially generating a long-lasting socioeconomic impact. Both medical sciences and biomedical research have also been challenged, consequently leading to a large number of clinical trials and vaccine initiatives. While known proteins of pathobiological importance are targets for these therapeutic approaches, it is imperative to explore other factors of viral significance. Accessory proteins are one such trait that have diverse roles in coronavirus pathobiology. Here, we analyze certain genomic characteristics of SARS-CoV-2 accessory protein ORF8 and predict its protein features. We have further reviewed current available literature regarding its function and comparatively evaluated these and other features of ORF8 and ORF8ab, its homolog from SARS-CoV. Because coronaviruses have been infecting humans repeatedly and might continue to do so, we therefore expect this study to aid in the development of holistic understanding of these proteins. Despite low nucleotide and protein identity and differentiating genome level characteristics, there appears to be significant structural integrity and functional proximity between these proteins pointing towards their high significance. There is further need for comprehensive genomics and structural-functional studies to lead towards definitive conclusions regarding their criticality and that can eventually define their relevance to therapeutics development.

6.
J Virol ; 97(3): e0001123, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2286211

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the worldwide coronavirus disease 2019 (COVID-19) pandemic. The novel SARS-CoV-2 ORF8 protein is not highly homologous with known proteins, including accessory proteins of other coronaviruses. ORF8 contains a 15-amino-acid signal peptide in the N terminus that localizes the mature protein to the endoplasmic reticulum. Oligomannose-type glycosylation has been identified at the N78 site. Here, the unbiased molecular functions of ORF8 are also demonstrated. Via an immunoglobulin-like fold in a glycan-independent manner, both exogenous and endogenous ORF8 interacts with human calnexin and HSPA5. The key ORF8-binding sites of Calnexin and HSPA5 are indicated on the globular domain and the core substrate-binding domain, respectively. ORF8 induces species-dependent endoplasmic reticulum stress-like responses in human cells exclusively via the IRE1 branch, including intensive HSPA5 and PDIA4 upregulation, with increases in other stress-responding effectors, including CHOP, EDEM and DERL3. ORF8 overexpression facilitates SARS-CoV-2 replication. Both stress-like responses and viral replication induced by ORF8 have been shown to result from triggering the Calnexin switch. Thus, ORF8 serves as a key unique virulence gene of SARS-CoV-2, potentially contributing to COVID-19-specific and/or human-specific pathogenesis. IMPORTANCE Although SARS-CoV-2 is basically regarded as a homolog of SARS-CoV, with their genomic structure and the majority of their genes being highly homologous, the ORF8 genes of SARS-CoV and SARS-CoV-2 are distinct. The SARS-CoV-2 ORF8 protein also shows little homology with other viral or host proteins and is thus regarded as a novel special virulence gene of SARS-CoV-2. The molecular function of ORF8 has not been clearly known until now. Our results reveal the unbiased molecular characteristics of the SARS-CoV-2 ORF8 protein and demonstrate that it induces rapidly generated but highly controllable endoplasmic reticulum stress-like responses and facilitates virus replication by triggering Calnexin in human but not mouse cells, providing an explanation for the superficially known in vivo virulence discrepancy of ORF8 between SARS-CoV-2-infected patients and mouse.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Calnexin/genetics , SARS-CoV-2/genetics , Virus Replication
7.
Cell Rep ; 42(4): 112286, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2283472

ABSTRACT

ER-phagy is a form of autophagy that is mediated by ER-phagy receptors and selectively degrades endoplasmic reticulum (ER). Coronaviruses have been shown to use the ER as a membrane source to establish their double-membrane vesicles (DMVs). However, whether viruses modulate ER-phagy to drive viral DMV formation and its underlying molecular mechanisms remains largely unknown. Here, we demonstrate that coronavirus subverts ER-phagy by hijacking the ER-phagy receptors FAM134B and ATL3 into p62 condensates, resulting in increased viral replication. Mechanistically, we show that viral protein ORF8 binds to and undergoes condensation with p62. FAM134B and ATL3 interact with homodimer of ORF8 and are aggregated into ORF8/p62 liquid droplets, leading to ER-phagy inhibition. ORF8/p62 condensates disrupt ER-phagy to facilitate viral DMV formation and activate ER stress. Together, our data highlight how coronavirus modulates ER-phagy to drive viral replication by hijacking ER-phagy receptors.

8.
Brief Funct Genomics ; 22(2): 227-240, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2280470

ABSTRACT

SARS-CoV-2 encodes eight accessory proteins, one of which, ORF8, has a poorly conserved sequence with SARS-CoV and its role in viral pathogenicity has recently been identified. ORF8 in SARS-CoV-2 has a unique functional feature that allows it to form a dimer structure linked by a disulfide bridge between Cys20 and Cys20 (S-S). This study provides structural characterization of natural mutant variants as well as the identification of potential drug candidates capable of binding directly to the interchain disulfide bridge. The lead compounds reported in this work have a tendency to settle in the dimeric interfaces by direct interaction with the disulfide bridge. These molecules may disturb the dimer formation and may have an inhibition impact on its potential functional role in host immune evasion and virulence pathogenicity. This work provides detailed insights on the sequence and structural variability through computational mutational studies, as well as potent drug candidates with the ability to interrupt the intermolecular disulfide bridge formed between Cys20 and Cys20. Furthermore, the interactions of ORF8 peptides complexed with MHC-1 is studied, and the binding mode reveals that certain ORF8 peptides bind to MHC-1 in a manner similar to other viral peptides. Overall, this study is a narrative of various computational approaches used to provide detailed structural insights into SARS-CoV-2 ORF8 interchain disulfide bond disruptors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Dimerization
9.
Dokl Biochem Biophys ; 507(1): 242-246, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2245178

ABSTRACT

In mid-2021, the Delta strain of SARS-CoV-2 caused the third wave of the COVID-19 pandemic. Huge efforts have been devoted to studying the effect of its mutations on the effectiveness of neutralizing antibodies. Much less attention was paid to the individual features of the presentation of its peptides by molecules of the major histocompatibility complex class I (MCHC-I). In this study, the correlation of the HLA-I genotype of patients under the age of 60 years with the severity of COVID-19 caused by the two most common variants of the SARS-CoV-2 Delta strain in the summer of 2021: AY.122 and B.1.617.2 was studied. Analysis of the severity of the course of COVID-19 revealed a more severe course of the disease caused by the AY.122 variant. Comparison of the mutation profile of the two most common variants of the Delta strain showed that that the G8R mutation in the NS8 protein makes the greatest contribution to the ability of MHC-I to present viral peptides. Given that the NS8 protein is able to suppress the maturation of MHC-I molecules, the appearance of a mutation in one of its immunogenic epitopes could make a significant contribution to the prevalence of the AY.122 variant in the Russian population.


Subject(s)
COVID-19 , Humans , Middle Aged , COVID-19/genetics , SARS-CoV-2/genetics , Pandemics , Mutation
10.
Int Immunol ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2232010

ABSTRACT

Many patients with severe COVID-19 suffer from pneumonia and the elucidation of the mechanisms underlying the development of this severe condition is important. The in vivo function of the ORF8 protein secreted by SARS-CoV-2 is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2 and found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrated that the serum ORF8 protein levels are well-correlated with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a SARS-CoV-2 viral cytokine involved in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.

11.
J Med Virol ; 2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2229042

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread, and vanishing of SARS-CoV-2 variants causing successive waves are complex. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 2020. Here, we analyzed and classified into subvariants and lineages 7453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1 ± 1.4 months, during which 4.1 ± 2.6 mutations accumulated. Growth rate was 0.079 ± 0.045, varying from 0.010 to 0.173. Most of the lineages exhibited a bell-shaped distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in SARS-CoV-2 of mink and in the Alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

12.
Mol Divers ; 2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-2228737

ABSTRACT

In India, during the second wave of the COVID-19 pandemic, the breakthrough infections were mainly caused by the SARS-COV-2 delta variant (B.1.617.2). It was reported that, among majority of the infections due to the delta variant, only 9.8% percent cases required hospitalization, whereas only 0.4% fatality was observed. Sudden dropdown in COVID-19 infections cases were observed within a short timeframe, suggesting better host adaptation with evolved delta variant. Downregulation of host immune response against SARS-CoV-2 by ORF8 induced MHC-I degradation has been reported earlier. The Delta variant carried mutations (deletion) at Asp119 and Phe120 amino acids which are critical for ORF8 dimerization. The deletions of amino acids Asp119 and Phe120 in ORF8 of delta variant resulted in structural instability of ORF8 dimer caused by disruption of hydrogen bonds and salt bridges as revealed by structural analysis and MD simulation studies. Further, flexible docking of wild type and mutant ORF8 dimer revealed reduced interaction of mutant ORF8 dimer with MHC-I as compared to wild-type ORF8 dimer with MHC-1, thus implicating its possible role in MHC-I expression and host immune response against SARS-CoV-2. We thus propose that mutant ORF8 of SARS-CoV-2 delta variant may not be hindering the MHC-I expression thereby resulting in a better immune response against the SARS-CoV-2 delta variant, which partly explains the possible reason for sudden drop of SARS-CoV-2 infection rate in the second wave of SARS-CoV-2 predominated by delta variant in India.

13.
Front Microbiol ; 13: 1027015, 2022.
Article in English | MEDLINE | ID: covidwho-2224829

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic, induces an unbalanced immune response in the host. For instance, the production of type I interferon (IFN) and the response to it, which act as a front-line defense against virus invasion, are inhibited during SARS-CoV-2 infection. In addition, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, is upregulated in COVID-19 patients with severe symptoms. Studies on the closely related betacoronavirus, SARS-CoV, showed that viral proteins such as Nsp1, Orf6 and nucleocapsid protein inhibit IFN-ß production and responses at multiple steps. Given the conservation of these proteins between SARS-CoV and SARS-CoV-2, it is not surprising that SARS-CoV-2 deploys similar immune evasion strategies. Here, we carried out a screen to examine the role of individual SARS-CoV-2 proteins in regulating innate immune signaling, such as the activation of transcription factors IRF3 and NF-κB and the response to type I and type II IFN. In addition to established roles of SARS-CoV-2 proteins, we report that SARS-CoV-2 proteins Nsp6 and Orf8 inhibit the type I IFN response but at different stages. Orf6 blocks the translocation of STAT1 and STAT2 into the nucleus, whereas ORF8 inhibits the pathway in the nucleus after STAT1/2 translocation. SARS-CoV-2 Orf6 also suppresses IRF3 activation and TNF-α-induced NF-κB activation.

14.
Front Immunol ; 13: 1035559, 2022.
Article in English | MEDLINE | ID: covidwho-2109772

ABSTRACT

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic. The genome of SARS-CoV-2 encodes nine accessory proteins that are involved in host-pathogen interaction. ORF8 is unique among these accessory proteins. SARS-CoV-2 ORF8 shares a surprisingly low amino acid sequence similarity with SARS-COV ORF8 (30%), and it is presumed to have originated from bat. Studies have shown that ORF8 exerts multiple different functions that interfere with host immune responses, including the downregulation of MHC class I molecules. These functions may represent strategies of host immune evasion. The x-ray crystal structure of ORF8 revealed an immunoglobulin-like domain with several distinguishing features. To date, there are numerous unanswered questions about SARS-CoV-2 ORF8 protein and its structure-function relationship that we discuss in this mini-review. A better understanding of how ORF8 interacts with components of the immune system is needed for elucidating COVID-19 pathogenesis and to develop new avenues for the treatment of the disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Amino Acid Sequence , Host-Pathogen Interactions
15.
Life Sci ; 301: 120624, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-2105537

ABSTRACT

AIMS: To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS: HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS: Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 µM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE: Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.


Subject(s)
COVID-19 , Cannabidiol , Antiviral Agents , Apoptosis , Cannabidiol/pharmacology , HEK293 Cells , Humans , Immunity, Innate/genetics , Interferons/pharmacology , Membrane Proteins , Poly I-C/pharmacology , RNA , SARS-CoV-2
16.
Gene ; 851: 147020, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2095373

ABSTRACT

PURPOSE: To assess, if the SARS-CoV-2 mutate in a similar pattern globally or has a specific pattern in any given population. RESULTS: We report, the insertion of TTT at 11085, which adds an extra amino acid, F to the NSP6 at amino acid position 38. The highest occurrence of TTT insertion at 11,085 position was found in UK derived samples (65.97%). The second and third highest occurrence of the mutation were found in Australia (8.3%) and USA (4.16%) derived samples, respectively. Another important discovery of this study is the C27945T mutation, which translates into the termination of ORF-8 after 17 amino acids, reveals that the SARS-CoV-2 can replicate without the intact ORF-8 protein. We found that the 97% of C27945T mutation of global occurrence, occurred in Europe and the USA derived samples. CONCLUSIONS: Two of the reported mutations (11085TTT insertion and C27945T nonsense), which seemed to reduce Type I interferon response are linked to specific geographical locations of the host and implicate region-specific mutations in the virus. The findings of this study signify that SARS-CoV-2 has the potential to adapt differently to different populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Pandemics , Genome, Viral , Mutation , Phylogeny , Amino Acids/genetics
17.
Emerg Microbes Infect ; 11(1): 2116-2119, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956544

ABSTRACT

The SARS-CoV-2 Omicron variant has led to a major wave of COVID-19 in Hong Kong between January and May 2022. Here, we used seroprevalence to estimate the combined incidence of vaccination and SARS-CoV-2 infection, including subclinical infection which were not diagnosed at the acute stage. The overall seropositive rate of IgG against receptor binding domain (anti-RBD IgG) increased from 52.2% in December 2021 to 89.3% in May 2022. The level of anti-RBD IgG was lowest in the 0-9 and ≥80 year-old age groups in May 2022. The seropositive rate of antibody against ORF8, which reflects the rate of prior infection, was 23.4% in May 2022. Our data suggest that although most individuals were either vaccinated or infected after the fifth wave, children and older adults remain most vulnerable. Public health measures should target these age groups in order to ameliorate the healthcare consequences of upcoming waves.


Subject(s)
COVID-19 , Aged , Aged, 80 and over , Antibodies, Viral , COVID-19/epidemiology , Child , Hong Kong/epidemiology , Humans , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies
18.
Front Microbiol ; 13: 883597, 2022.
Article in English | MEDLINE | ID: covidwho-1952423

ABSTRACT

COVID-19 is currently global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Accompanying the rapid spread of the error-prone RNA-based genome, several dominant SARS-CoV-2 variants have been genetically identified. The mutations in the spike protein, which are essential for receptor binding and fusion, have been intensively investigated for their contributions to viral transmission. Nevertheless, the importance of other viral proteins and their mutations in SARS-CoV-2 lifecycle and transmission remains fairly understood. Here, we report the strong potency of an accessory protein ORF8 in modulating the level and processing of the spike protein. The expression of ORF8 protein does not affect propagation but expression of spike protein, which may lead to pseudovirions with less spike protein on the surface, therefore less infection potential. At the protein level, ORF8 expression led to downregulation and insufficient S1/S2 cleavage of the spike protein in a dose-dependent manner. ORF8 exhibits a strong interaction with the spike protein mainly at S1 domains and mediates its degradation through multiple pathways. The dominant clinical isolated ORF8 variants with the reduced protein stability exhibited the increased capacity of viral transmission without compromising their inhibitory effects on HLA-A2. Although the increase in spike protein level and Spike pseudovirus production observed by using highly transmissible clinical spike variants, there was no significant compromise in ORF8-mediated downregulation. Because ORF8 is important for immune surveillance and might be required for viral fitness in vivo, the alteration of the spike protein might be an optional strategy used by SARS-CoV-2 to promote viral transmission by escaping the inhibitory effects of ORF8. Therefore, our report emphasized the importance of ORF8 in SARS-CoV-2 spike protein production, maturation, and possible evolution.

19.
Front Cell Infect Microbiol ; 12: 899546, 2022.
Article in English | MEDLINE | ID: covidwho-1952264

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has currently infected over 430 million individuals worldwide. With the variant strains of SARS-CoV-2 emerging, a region of high mutation rates in ORF8 was identified during the early pandemic, which resulted in a mutation from leucine (L) to serine (S) at amino acid 84. A typical feature of ORF8 is the immune evasion by suppressing interferon response; however, the mechanisms by which the two variants of ORF8 antagonize the type I interferon (IFN-I) pathway have not yet been clearly investigated. Here, we reported that SARS-CoV-2 ORF8L and ORF8S with no difference inhibit the production of IFN-ß, MDA5, RIG-I, ISG15, ISG56, IRF3, and other IFN-related genes induced by poly(I:C). In addition, both ORF8L and ORF8S proteins were found to suppress the nuclear translocation of IRF3. Mechanistically, the SARS-CoV-2 ORF8 protein interacts with HSP90B1, which was later investigated to induce the production of IFN-ß and IRF3. Taken together, these results indicate that SARS-CoV-2 ORF8 antagonizes the RIG-I/MDA-5 signaling pathway by targeting HSP90B1, which subsequently exhibits an inhibitory effect on the production of IFN-I. These functions appeared not to be influenced by the genotypes of ORF8L and ORF8S. Our study provides an explanation for the antiviral immune suppression of SARS-CoV-2 and suggests implications for the pathogenic mechanism and treatment of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Membrane Glycoproteins , Viral Proteins , COVID-19/virology , Humans , Immune Evasion , Interferon Type I/metabolism , Interferon-beta/genetics , Membrane Glycoproteins/metabolism , SARS-CoV-2 , Signal Transduction , Viral Proteins/metabolism
20.
Int Immunopharmacol ; 109: 108922, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945277

ABSTRACT

Safe and effective vaccines are urgently needed to combat the COVID-19 pandemic. However, the SARS-CoV-2 variants raise concerns about the effectiveness of vaccines. As a SARS-CoV-2 antigen target, ORF8 strongly inhibits the IFN-ß and NF-κB-responsive promoter, and can be potentially used for the development of SARS-CoV-2 vaccine. However, it is necessary to improve the immunogenicity of ORF8 by adjuvants or delivery systems. CRM197 was a carrier protein with the ability to activate T helper cells for antigens. Eight-arm PEG could conjugate multiple antigen molecules in one entity with inherent adjuvant effect. In the present study, ORF8 was conjugated with CRM197 and 8-arm PEG, respectively. The cellular and humoral immune responses to the conjugates (ORF8-CRM and ORF8-PEG) were evaluated in the BALB/c mice. As compared with ORF8-CRM and ORF8 administrated with aluminum adjuvant (ORF8/AL), ORF8-PEG induced a higher ORF8-specific IgG titer (2.6 × 104), higher levels of cytokines (IFN-γ, TNF-α, IFN-ß, and IL-5), stronger splenocyte proliferation. Thus, conjugation with 8-arm PEG was an effective method to improve the immune response to ORF8. Moreover, ORF8-PEG did not lead to apparent toxicity to the cardiac, liver and renal functions. ORF8-PEG was expected to act as an effective vaccine to provide the immune protection against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic , Animals , COVID-19 Vaccines , Humans , Mice , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL